Disease-associated mutant alpha-actinin-4 reveals a mechanism for regulating its F-actin-binding affinity.

نویسندگان

  • Astrid Weins
  • Johannes S Schlondorff
  • Fumihiko Nakamura
  • Bradley M Denker
  • John H Hartwig
  • Thomas P Stossel
  • Martin R Pollak
چکیده

Alpha-actinin-4 is a widely expressed protein that employs an actin-binding site with two calponin homology domains to crosslink actin filaments (F-actin) in a Ca(2+)-sensitive manner in vitro. An inherited, late-onset form of kidney failure is caused by point mutations in the alpha-actinin-4 actin-binding domain. Here we show that alpha-actinin-4/F-actin aggregates, observed in vivo in podocytes of humans and mice with disease, likely form as a direct result of the increased actin-binding affinity of the protein. We document that exposure of a buried actin-binding site 1 in mutant alpha-actinin-4 causes an increase in its actin-binding affinity, abolishes its Ca(2+) regulation in vitro, and diverts its normal localization from actin stress fibers and focal adhesions in vivo. Inactivation of this buried actin-binding site returns the affinity of the mutant to that of the WT protein and abolishes aggregate formation in cells. In vitro, actin filaments crosslinked by the mutant alpha-actinin-4 exhibit profound changes of structural and biomechanical properties compared with WT alpha-actinin-4. On a molecular level, our findings elucidate the physiological importance of a dynamic interaction of alpha-actinin with F-actin in podocytes in vivo. We propose that a conformational change with full exposure of actin-binding site 1 could function as a switch mechanism to regulate the actin-binding affinity of alpha-actinin and possibly other calponin homology domain proteins under physiological conditions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evidence for functional homology in the F-actin binding domains of gelsolin and alpha-actinin: implications for the requirements of severing and capping

The F-actin binding domains of gelsolin and alpha-actinin compete for the same site on actin filaments with similar binding affinities. Both contain tandem repeats of approximately 125 amino acids, the first of which is shown to contain the actin-binding site. We have replaced the F-actin binding domain in the NH2-terminal half of gelsolin by that of alpha-actinin. The hybrid severs filaments a...

متن کامل

The Ca(2+)-binding domains in non-muscle type alpha-actinin: biochemical and genetic analysis

Dictyostelium alpha-actinin is a Ca(2+)-regulated F-actin cross-linking protein. To test the inhibitory function of the two EF hands, point mutations were introduced into either one or both Ca(2+)-binding sites. After mutations, the two EF hands were distinguishable with respect to their regulatory activities. Inactivation of EF hand I abolished completely the F-actin cross-linking activity of ...

متن کامل

Dynamic viscoelasticity of actin cross-linked with wild-type and disease-causing mutant alpha-actinin-4.

The actin cross-linker alpha-actinin-4 has been found to be indispensable for the structural and functional integrity of podocytes; deficiency or alteration of this protein due to mutations results in kidney disease. To gain insight into the effect of the cross-linker on cytoskeletal mechanics, we studied the macroscopic rheological properties of actin networks cross-linked with wild-type and m...

متن کامل

An interaction between zyxin and alpha-actinin

Zyxin is an 82-kD protein first identified as a component of adhesion plaques and the termini of stress fibers near where they associate with the cytoplasmic face of the adhesive membrane. We report here that zyxin interacts with the actin cross-linking protein alpha-actinin. Zyxin cosediments with filamentous actin in an alpha-actinin-dependent manner and an association between zyxin and alpha...

متن کامل

Nonlinear viscoelasticity of actin transiently cross-linked with mutant α-actinin-4.

Filamentous actin and associated actin binding proteins play an essential role in governing the mechanical properties of eukaryotic cells. They can also play a critical role in disease; for example, mutations in α-actinin-4 (Actn4), a dynamic actin cross-linking protein, cause proteinuric disease in humans and mice. Amino acid substitutions strongly affect the binding affinity and protein struc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 104 41  شماره 

صفحات  -

تاریخ انتشار 2007